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Abstract. We propose an effective exponent ruling the algebraic decay of the average quantum
return probability for discrete Schrödinger operators. We compute it for some non-periodic
substitution potentials with different degrees of randomness, and do not find a complete qualitative
agreement with the spectral type of the substitution sequences themselves, i.e., the more random
the sequence the smaller such an exponent.

Anomalous transport in non-periodic structures is due to intricate quantum interferences which
may also lead to localization of wavefunctions. Another possibility is ballistic motion, mainly
related to periodic structures. Here we consider transport properties in nearest-neighbours
tight-binding models inZ whose general HamiltonianH is given by

(Hψ)n = ψn+1 +ψn−1 + λVnψn (1)

with λ > 0 and potentialsV = (Vn)n∈Z generated by some non-periodic substitution
sequences.

Among the characterizations of (de)localization and transport we single out the (average)
moments of the ‘position’ operator

mα(T ) = 1

T

∫ T

0
dt

∞∑
n=−∞

|n− n0|α|ψn(t)|2 α 6= 0 (2)

and the (average) return probability

C(T ) = 1

T

∫ T

0
dt |ψn0(t)|2. (3)

In relations (2) and (3) it is implicitly assumed that the initial condition isψn = δn,n0. Both
quantitiesmα(T ) andC(T ) have strong physical appeal and in some cases are attainable to
theoretical and numerical investigations. We notice that the return probability was one of
the first quantities considered in the seminal paper by Anderson on localization in disordered
structures [1].

It has been found that for largeT [2–7]

mα(T ) ∼ T αβ(α) and C(T ) ∼ T −1. (4)

Localization should be characterized by vanishing exponentsβ and1, ballistic motion by
β(α) = 1 = 1, while anomalous transport by 0< β,1 < 1. Notice thatβ(2) is related to
the direct conductivity via the anomalous Drude formula [8,9].
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In this letter we consider potentialsV in (1) generated by some substitution sequences
and compute the exponent for the decay of the return probability as a function of the degree
of randomness of those sequences. As will be seen later, in most cases1 cannot be obtained
directly from numerical integration of the time-dependent Schrödinger equation; namely, the
standard fitting procedure given by equation (4) works only for the well-investigated case of
Fibonacci (FCC) potentials (to be defined below). We then propose an alternative approach,
based on the energy spectral decomposition of the initial quantum state, which is not only
able to retrieve the known FCC results but also permits us to exhibit an effective exponent for
other non-periodic substitution potentials such as Thue–Morse (TM), Rudin–Shapiro (RS),
paperfolding (PF) and period doubling (PD) (see below for their precise descriptions). The
main conclusion is that there is no perfect correspondence of the exponent ruling the algebraic
decay of the return probability and the degree of randomness of the own substitution sequences,
as one expects based on general considerations (i.e., the more random the sequence the smaller
such an exponent). Now we proceed to the details of the points just outlined, including a
justification for the choice of1 as our exponent of interest.

The RAGE theorem and Wiener lemma give direct physical meaning to the standard types
of spectra, i.e., point and continuous (absolutely and singular) in the sense that one of their
corollaries is that for continuous spectraβ(α) > 0 and1 > 0, while for point spectra1 = 0;
there remains the possibility ofβ > 0 even for point spectra due to the tail of eigenfunctions
and domain intricateness [10,11]. The determination of such exponents is a quantitative step
from RAGE and the Wiener lemma which, in turn, is still related to deep spectral quantities,
i.e., generalized dimensions of the (positive) spectral measures associated to the initial stateψ .
It has been rigorously proven thatβ(α) is bounded from below by the information dimension
D1 [2,3] (all dimensions are related to the corresponding spectral measure) and also conjectured
thatβ(2) ≈ D0 (D0 denotes the fractal dimension of the spectrum). In an interesting paper,
Guarneri and Mantica [12] have presented examples of homogeneous fractal spectral measures,
i.e., with generalized dimensionsDq = D0 for any q, for which β(α) is not constant and
no simple exact relation seems to hold between the thermodynamics of the spectrum and the
exponentβ, so that ‘multiscaling does not require multifractality’ [12]; this was called quantum
intermitency in [12,13]. See [14] for some recent results on a particular class of systems and
other references.

On the other hand, it was rigorously proven [5,6] that the exponent1 ruling the algebraic
decay of the return probability equals the correlation dimensionD2. We note that such a
relation supposes the limit defining the dimensionD2 does exist. See also [4] where this
relation was first proposed in the context of anomalous diffusion. Therefore, we have selected
the return probability, its corresponding exponent1 and correlation dimensionD2, as the main
tools for analysing our systems.

Relevant examples of anomalous diffusion are generated by almost-periodic potentials
V ; an important class of such potentials is given byV induced by non-periodic (primitive)
substitution sequences [15, 16]. These sequences form a convenient laboratory for the
study of anomalous transport since in all rigorously analysed cases they generate singular
continuous spectra for the tight-binding model (1), although the own spectral types of
substitution sequences are not equal; for example, FCC, PF and PD substitution sequences
have point autocorrelation measures, TM has singular continuous autocorrelation measure,
and the autocorrelation measure of the RS substitution sequence is absolutely continuous.
Although all these sequences are almost periodic, their spectral properties characterize them
qualitatively from ‘ordered to random’ since periodic and quasiperiodic sequences have
pure point autocorrelation measures (as FCC, PF and PD do), whereas independent random
sequences have absolutely continuous autocorrelation measures (as RS does). The TM
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sequence lies in an intermediate place. It is also worth noting that all these sequences give rise
to strictly ergodic dynamical systems with zero topological and generalized entropy [15,17].

Due to different degrees of randomness of the substitution sequences, differences in the
spectral properties of the corresponding tight-binding Hamiltonians (1) were expected, but
as already commented above all rigorously studied cases have presented singular continuous
spectrum [18–23] (the RS case is an important open problem [19, 22, 24]; the PF case is also
open). Our main goal in this letter is to investigate whether the spectral character of the
sequence generating the potential is responsible for different physics through details of the
return probability behaviour. To this end we consider potentialsV in (1) generated by the five
non-periodic sequences FCC, PF, PD, TM and RS.1 can be computed either from numerical
integration of the time-dependent Schrödinger equation, and then fitting a straight line on
logC(t) × log t , or directly computingD2 from its definition (which also involves a straight
line fitting—see below). However, as already anticipated, we have faced problems in linear
fittings in both procedures (except for the well-investigated case of FCC potentials) and we
propose a pragmatic approach to obtain such exponents which are able to recover the known
FCC results.

Now we present the rules describing the sequences we use to generateV . FCC, PD and
TM sequences are constructed with an alphabet of two letters{a, b} through the substitutions

a→ ab b→ a (FCC) a→ ab b→ ba (TM)

a→ ab b→ aa (PD).

Beginning witha and applying the substitution rules successively, non-periodic sequences are
obtained; e.g., the TM sequence is given by

abbabaabbaababba . . . .

The RS and PF sequences can be obtained with an alphabet of four letters{a′, b′, c′, d ′}, the
substitutions

a′ → a′b′ b′ → a′c′ c′ → d ′b′ d ′ → d ′c′ (RS)

a′ → a′b′ b′ → c′b′ c′ → a′d ′ d ′ → c′d ′ (PF)

and then the identificationsa′, b′ → a andc′, d ′ → b in both cases; the first elements of the
RS sequence are

aaabaabaaaabbb . . . .

We then use these substitution sequences to define our potentialsV ; we takeVn = 0 if the
nth letter of the sequence isa andVn = 1 in case it isb. There are standard ways to extend
the potential for negative values ofn [20, 22], but we avoid such an issue by taking a finite
sample ofN sites, withn > 0, and using the initial wavefunctionψn = δN/2,n0. In this way
we construct the almost-periodic substitution potentialsλV and investigate1 as a function of
the degree of randomness of the potential and its intensityλ.

It is known that FCC, PD and TM generate potentials whose spectra of (1) are singular
continuous for allλ 6= 0. The case of RS has been numerically investigated in [25, 26]
indicating point spectrum forλ > 2 and mixed spectrum, i.e., point and singular continuous,
for 0 < λ 6 2 (notice we use a scale for the potential values which is different from [25]).
For Hamiltonian (1) with PF potential it is only known that its spectrum has no absolutely
continuous component, since it is primitive [22]; from a rigorous point of view the lack/presence
of eigenvalues in this case is also an open question.

The case of the FCC Hamiltonian has also been considered in [4] and a good agreement
between the value of1 from numerical integration of the Schrödinger equation andD2 was
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found. Let us recall the definition ofD2 associated to a spectral measureµ and how it is
usually estimated [4, 6]. Forε > 0 letBε(x) denote the open ball of centrex and radiusε/2
and set

γ (ε) =
∫
µ(Bε(x)) dµ (x)

the correlation dimension ofµ is given by the limit

D2 = lim
ε→0

logγ (ε)

logε
. (5)

If this limit does not exist one definesD+
2 andD−2 via lim sup and lim inf, respectively. The

latter remark is important here since we have found numerical indications that the limit in the
definition (5) does not exist for general substitution potentials. In numerical practice we have
a finite basis approximation for (1) whose spectrum is composed of eigenvaluesχk; then we
divide the energy range into boxesBj of lengthε, approximate

γ (ε) ≈ γ ∗(ε) =
∑
j

( ∑
χk∈Bj
|ak|2

)2

(6)

and getD2 from the linear fitting of logγ ∗(ε) × logε. ak is the projection of the initial
wavefunctionψ on the eigenvector with eigenvalueχk. We have used these procedures
to recoverD2 and1 found in [4] for the FCC case as illustrated in figure 1. However,
such techniques do not work for substitution potentials distinct from FCC (as far as we have
checked), since no clear region with linear behaviour is found in the plots logγ ∗(ε)× logε and
logC(t)× log t , as exemplified in figure 2 for the PD potential withλ = 1.6. We suspect this
behaviour is an indication that the limits defining the scale exponentsD2 and1 are not well
defined in such situations; then we propose a pragmatic approach to extract effective exponents
D2 by selecting a particular valueε∗ of ε. Before presenting our approach we stress we have
also tried to get well-defined exponents by site averaging on samples beginning at locations
0, 1× 104, 2× 104, . . . ,5× 104, but quite similar behaviours were found.

We begin our argument with the remark that ifε is smaller than the least eigenvalue spacing
(we just ignore the possibility of degenerate eigenvalues in this argument) then

γ ∗(ε) =
∑
k

|ak|4

which resembles the so-called inverse participation ratio (which does not depend onε); this also
gives a physical interpretation forD2. As a naive first guess for an effective exponent one could
try to use

∑
k |ak|4 instead ofγ ∗(ε), but the exact value ofε to be used in an approximation to

(5) is not clear at all. The theoretical determination ofD2 involves the limitε→ 0; finite basis
approximations preclude this limit and also too small values ofε are meaningless, despite the
inverse participation ratio interpretation. For sufficient small values ofε we have

γ ∗(ε)∑
k |ak|4

≈ 1. (7)

We suggest pickingε∗ as the smallest value ofε such that the lhs of (7) considerably deviates
from 1, so still keeping track ofγ ∗(ε) and also the inverse participation ratio interpretation in
operation. Then we estimate the effectiveD2 asD∗2 given by

D∗2 =
logγ ∗(ε∗)

logε∗
. (8)

Let us be more precise on how we have picked upε∗ in practice. By using double precision
(16 digits) in our code, we adopted that after diagonalization we can numerically resolve the
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(a)

(b)

Figure 1. (a) Log–log (base 10) of the return probability (dashed curve)C(t) for the FCC potential
with λ = 1.0 versus time. The slope of the straight line fitting (full line) corresponding to1 is
indicated. (b) Log–log (base 10) ofγ ∗ (dashed curve) for the FCC potential withλ = 1.0 versus
ε. The slope of the straight line fitting (full line) corresponding toD2 is indicated.

spectral quantities with eight digits, i.e., half of the number of digits of the code precision, so
thatε∗ is given by the smallest value ofε such thatγ ∗(ε)−∑k |ak|4 > 10−8 or, equivalently,
the smallestε such that∣∣∣∣ γ ∗(ε)∑

k |ak|4
− 1

∣∣∣∣ > 10−8∑
k |ak|4

.

We remark that in most casesε∗ can also be obtained directly from visual inspection, as in
figure 2(b), and the precise value 10−8 is not so relevant since in generalγ ∗(ε)has a pronounced
jump atε = ε∗.

We have tested our approach in the FCC case and have got very good agreement with the
computed values ofD2 from our linear fittings and the values reported in [4]. In figure 2(b) we
show a typical curve used to estimateε∗, and in figure 3 we compare the values of the exponents
1 andD2 as calculated in figure 1 and also the matching values ofD∗2 from equation (8) for
the FCC case. From now on we use this procedure to estimate the exponentsD∗2 for the other
substitution Hamiltonians (1) considered here.
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(a)

(b)

Figure 2. Same as in figure 1 but for the PD potential withλ = 1.6. The arrow in (b) indicatesε∗;
the first point on the left in (b) corresponds to the least eigenvalue spacing, for whichγ ∗ =∑k |ak |4.
No linear fitting is shown.

It is now time to discuss our numerical results and details of their implementations.
The return probabilityC(T ) was calculated by direct diagonalization of the Hamiltonian and
eigenfunction expansion of the initial state; we used bases of sizeN ≈ 1× 103 and checked
some results with bases of sizeN ≈ 2× 103. The initial condition was always concentrated
on the centre of the basisn0 and we have followed its time evolution until timeTf for which
the modulus of the amplitude at one of the border sites reaches 1×10−6. For the calculation of
D2 we have considered subdivisions of the spectrum in subintervals of sizeε ranging from the
least eigenvalues spacing (we disregarded multiple eigenvalues) up to 10−2. We could seldom
conceive a linear behaviour in such log–log plots in bothD2 and1 cases in order to extract
faithful exponents, so that we were left with the task of findingε∗ and computing onlyD∗2.

In figure 4 we present a summary of our main numerical results, i.e., the values ofD∗2 for
some substitution potentials as a function of the potential intensityλ. Since we are not aware
of any complete rigorous spectral classification for Hamiltonian (1) in the cases of RS and PF
sequences, we have also usedTf as indication of any possible (de)localization transition; this
is the reason for the restriction of the RS case toλ 6 1.7; for all substitution sequences we
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Figure 3. Scaling exponentsD2,D∗2 and1 for various potential intensitiesλ of the FCC potential.

Figure 4. Effective scaling exponentsD∗2 as function ofλ for some substitution potentials.

have foundTf 6 103 for λ 6 2, but for RSTf jumps fromTf ≈ 103 for λ = 1.7 toTf ≈ 105

for λ = 1.8, which characterizes the absence (at least numerically) of extended states. If
non-localized states are present their ‘amounts’ suffer a drastic reduction atλ ≈ 1.8 so that
we have not detected them. Recall that in [25,26] it is argued that all states of RS Hamiltonian
should be localized forλ > 2.0.

Since no such sharp transition inTf was found for the PF Hamiltonian, its values of
D∗2 are close to the corresponding values for PD, and both substitution sequences have point
autocorrelation measures, we conjecture that the PF Hamiltonian (1) has a singular continuous
spectrum for 06= |λ| 6 2 (maybe also for anyλ 6= 0) as the PD Hamiltonian does [18].

Besides the above conjecture we see from figure 4 that for all sequences the exponent
D∗2 decreases asλ increases (as physically expected). Since different exponents were found
despite the proven singular continuous spectra of FCC, TM and PD Hamiltonians, we see that
D∗2 is able to discern these operators. The values ofD∗2 for the RS are very close to the TM
case, but in principle one would not expect this since the autocorrelation measure of the RS
sequence is a Lebesgue measure (the same for random sequences). Notice that the spectral
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classification of the underlying sequence generating the potential does not reflect exactly inD∗2,
since these values for PF and PD are below the corresponding ones for TM and RS, the latter
sequences being considered ‘more random’ than the former ones. Notice, however, that for the
most popular sequences FCC, TM and RS we have found agreements with the classification
through the sequence spectral type, i.e., this order implying decreasing values ofD∗2.

The higher values of the exponents for RS compared with PD indicates that the presence
of extended states mixed with numerically found localized states [25,26] does not necessarily
imply lower exponentsD∗2.

Summing up, we found that for substitution potentials in general the dynamical exponent
1 and the correlation dimensionD2 are difficult to obtain from direct linear fittings (at least
with the basis sizes we used; we suspect this is a consequence of the quantum intermitency and
multiscaling in time of the dynamics [12, 13]) and we proposedD∗2 as an effective exponent,
which has recoveredD2 in the cases it can be directly obtained. We then computedD∗2 for
some substitution potentials and did not find a complete qualitative agreement with the spectral
type of the substitution sequences themselves, i.e., the more random the sequence, the smaller
D2. Only for RS did we get indications of a spectral transition from extended (critical) to
localized states, although its values ofD∗2 are higher than those for PD and PF cases.

CRO was partially supported by CNPq (Brazil); discussions with U Grimm at the Max Planck
Institute for the Physics of Complex Systems (Dresden, Germany) are acknowledged. GQP
thanks the support by FAPESP (Brazil).
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